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Introduction

Fix an algebrically closed field k with char(k) = 0. Let C be a projective nonsingular
curve of genus 5 defined over k, and let W C Pic*(C) be the subscheme of divisor classes of
degree 4 and dimension 1. W} is a curve, which is irreducible and nonsingular of genus 11 if
C is general, and can be identified with the singular locus of the theta divisor W, C Pic*(C).
Under the Gauss rational map W} is mapped 2-1 onto a curve I' C IP* which is nonsingular
of degree 10 and genus 6. T is the set of vertices of the rank four quadrics containing
the canonical image x(C) C IP*. The planes contained in the quadric Qr, L € W}, form
the congruence (2-dimensional family) of 4-secant planes to x(C). On each plane 7 of the
congruence we have the set (k(C) UT) N x consisting of 5 points. For a general choice of
7 these points are distinct and contained in a unique conic F' C 7w which can be obtained
as the locus of first order foci of the congruence, whereas the points (K:(C) U I‘) N7 are the
second order foci (see below for the definitions of first and second order foci).

This geometrical configuration can be viewed as the first case of a whole series in two
different ways. Firstly we can consider a sufficiently general curve C of genus g > 5, and
the locus W, | C Picf~!(C), which can be identified with the singular locus of the theta
divisor Wy_;. ng_l has pure dimension g — 4; the projectivized tangent space at a point
Le I/Vglfl\Wng1 is the linear space vy, C IP9~! of dimension g — 5 vertex of the quadric Q7
of rank four containing the canonical curve x(C'), which is the projectivized tangent cone to
Wq—l at L.

Each quadric Qr has two rulings of /P9~%’s, and when L varies in W,_,\WZ_; they
form a family of dimension g — 3. On each sufficiently general IP9~3 of the family there is
a rational normal curve of first order foci. It has been shown in [CS] that the curve C' can
be recovered from this family, and this has been used to give a proof of Torelli’s theorem.

Another extension of the genus 5 configuration can be introduced naturally, and it is the
object of the present paper. Let’s consider, for any odd g = 2n+1, n > 2, a sufficiently gen-
eral projective irreducible nonsingular curve C' of genus g, and the locus W, C Pic"™%(C).
By Brill-Noether theory it is known that W} 12 is a nonsingular irreducible curve, whose
genus has been computed by Kempf [K2] and by Pirola [P] (¢ = 11 for n = 2). For each
Lew} 1o the projectivized tangent cone to W, 2 at L is a variety Xy C IP?", of degree n
and dimension n + 1, and

De|L|

i.e. Xp is described as a 1-dimensional family of n-spaces, (n + 2)-secant to x(C). The
vertex vy, of Xy, varies in a curve I' C IP?", which is the Gauss image of W,% 42- The family
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of all the n-spaces (D), as L varies in W, _,, is 2-dimensional, i.e. a congruence. On each
sufficiently general (D) belonging to the congruence we consider the locus of first order foci
and we prove that it is a rational normal curve containing Supp(D;) U {v} (theorem 2).

As D varies the first order foci fill a 3-dimensional irreducible variety F¢ containing
k(C)UT. This variety is also the union of the 1-dimensional family of surfaces F, swept
by the focal curves as D varies in a linear pencil |L|, L € W}, ,. We completely explain the
geometrical meaning of these surfaces.

We then consider the second order foci of the above family of n-spaces, proving that on
every sufficiently general (D) they are the n + 3 points (x(C)UT) N (D) (theorem 3). This
allows to reconstruct the curve C' from the congruence. In the final section we consider the
genus 5 case, proving that F¢ is a hypersurface of degree 40 in IP* (theorem 5).

1. First order foci

For a fixed integer n > 2 let C be a projective irreducible nonsingular and non hyperel-
liptic curve of genus g = 2n + 1 and let IP = IP(V) = IP?>", where V = H'(C,O¢). Denote
by

k:C—1IP

the canonical embedding of C, defined by the complete canonical linear series |K]|.
As customary, we will use the symbol g}, to mean “a linear series of dimension r and
degree d”.
We denote by Cy the d-th symmetric product of C' and by Wy(C) the image of the
Abel-Jacobi map
Qg . Cd — PlCd(C)

Moreover we let
Cr={DecCq:h°(D)>r+1}

and
Wi =W5(C) = aq(Ch) = {L € Pic/(C) : hO(L) > r + 1}

We will consider C; and W} with their natural scheme structure.

In particular we will consider W', ,. By Brill-Noether theory W, , # 0 and all its
components have dimension at least one. Moreover, if C' € M, is sufficiently general then
W, is an irreducible and nonsingular curve.

n

LEMMA 1 If C is a general curve of genus g = 2n + 1 then for every L € W&—%Z the
linear series |L| is a base point free pencil, H'(C,L?) = 0 and |L?| is a g}, 3 not composed
with an involution.

Proof
If |L| has a base point p then L(—p) € W%_H, and this contradicts the generality of C.
Similarly |L| cannot have dimension bigger than one without contradicting the generality of

C.
HY(C, L?) = 0 follows from H°(C, KL~?) = ker(ur,), where

pr: H(C,L)® H°(C,KL™') — H'(C, K)
is the Petri map, and since this map is injective by the generality of C' (see [G]).

By Riemann-Roch h°(C,L?) = 4. Then ¢z> : C — IP? is not composed with an
irrational involution by the generality of C'. Similarly 2 is not composed with a rational
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involution because by the generality of C there is no g}L with h < n 4 2, a contradiction.
g.e.d.

We will henceforth assume that C is a general curve of genus g, so that Wr}+2 has

the above stated properties. It follows that a0 @ CL, o — W, , is a IP*-bundle, and in

particular C} 2 is an irreducible nonsingular surface, which we will denote by 5.

For every s € S we let Dy be the divisor of degree n + 2 parametrized by s and
As; = (D) C PP its linear span, which is a IP™, (n + 2)-secant to the curve x(C). We
therefore have a two-dimensional family of (n + 2)-secant IP™’s parametrized by S:

A Cc SxIPP
L 1)
S

Let’s recall how this family is constructed. Consider the universal divisor of degree n + 2:
D,i2 CChyaxC

and let Dg = D, .o N (S x C). Denote by p : S x C — S the projection. We have a
homomorphism of locally free sheaves on S

R'p.Osxc — R'p.Osxc(Ds) — 0

whose kernel is a locally free subsheaf F C R'p,.Osxc = H'(C,Oc) ® Og of rank n + 1.
Taking the associated projective bundles we get

A = IP(F) C P(R'p.Ogxc) =S x IP

For each point L € W, , we have the 1-dimensional subfamily of (1) parametrized by
the fibre a=!(L), i.e. consisting of the Ay = (D) when Dj varies in the linear pencil |L]|.
Their union X7, := Useq-1(1)As is an irreducible variety of dimension n + 1 and degree n (a
rational scroll of minimal degree) containing the canonical curve £(C). It can be constructed
as follows.

Let {01,02} be a basis of H*(C, L) and {r1,...,7,} a basis of H*(C, KL™'). Then X, is
the variety defined by the (%) quadrics obtained as maximal minors of the matrix of linear

2
Zy Ziz - Zip
Zor dog -+ Loy

where Z;; = 0;7;. Since the Brill-Noether map

forms:

pr: H(C,L)® H°(C,KL™') — H°(C, K)

is injective, it follows that the Z;;’s are linearly independent and therefore X, is a cone with
vertex a point vr,. A theorem of Kempf [K1] describes X, as the projectivized tangent cone
to W49 at L.

Note that in the case g = 5 the variety X, is a quadric of rank 4 containing the canonical
curve.

As L varies in W}, we obtain a 1-dimensional family of (n + 1)-dimensional cones X,
whose vertices describe a curve I' C IP. This curve is the Gauss image of W', ,, because for
each L € W, , the vertex vy, is the projectivized tangent line to W, at L. We have the
obvious equality:

U X1 =p2(A)

Lew, ,

where py : A — IP is the projection.
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Let A = Ay, s € S, be a member of the family (1). We have A = IP(U) where U C V
is a vector subspace of dimension n + 1. The normal bundle of A in IP is

Vv
Np = i ®k Oa(1)

and
)
U
Associated to the family (1) we have a functorial morphism x : S — G,,(IP) whose differential
at s is a linear map (the characteristic map)

HY(A, Np) = Hom(U

dxs : Ts,s — H°(A, Na)
The characteristic map induces a homomorphism of locally free sheaves on A:
D, : Tgs @k Op — Ny
We define the scheme of first order foci (or the focal scheme) of the family (1) at s to be
Fy = D1(®s) = {z € As : 1k, (D) < 1}

Its points are called first order foci of the family (1) at s.

THEOREM 2 For every L € W}, and for all sufficiently general s € a;iQ(L), Fs is
a rational normal curve (of degree n) of A, containing Supp(D;) U {vr}.

Proof

Since dim(Ts ) = 2, @ is defined by a n x 2 matrix of linear forms on A. Therefore, to
show that Fj is a rational normal curve it will be sufficient to show that ®; is 1-generic (see
[E], theorem 2.1 and section 2 of [CS]). This means that for every tangent vector 6 € T s\{0}
the element dys(6) € HO(A, N,), interpreted as a homomorphism dys(0) : U — is
surjective.

Consider the first order deformation of A, defined by dxs(6):

14
U

A C Spec(kle]) x P

€

!
Spec(kle])

The surjectivity of dy() is equivalent to the fact that pa(A.) C IP is not contained in a
hyperplane. But
p2(A,) D p2(De)

where D, C Spec(k[e]) x IP is the first order deformation of the divisor D, defined by 6.
Note that pa(D,) is a curvilinear scheme corresponding to a divisor on C satisfying:

D, < p2(Ds) < 2D,

Assume first that 0 is tangent to oz;iQ(L) at s, equivalently that the family D, deforms
Dy in the linear pencil |L|. Then, letting ¢r : C — IP' be the morphism defined by the
pencil, we have pa(D.) = ¢} (), where we have identified # with a curvilinear subscheme
of IP! supported at the point s € IP!. Since |Ds| = |L| is base point free, it follows that
p2(D.) = 2Dy, and therefore py(A,) is contained in a hyperplane if and only if 2D; is a
special divisor. But this is not possible by lemma 1; hence dys(f) is surjective in this case.
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Assume now that ¢ € T ,\{0} is not tangent to o, ,(L) at s. We can write:

p2(De) = p1+ -+ P+ 2(Prg1 + - + Pry2)

where Dy =p1 + -+ - + pnyo, and k£ > 0.

If k = 0 we conclude as in the previous case that dy;(0) is surjective.

If k =1 then pa(D.) = p1 +2(p2 + - - + Pny2) = 2Ds — py. If this is a special divisor then,
since 2D, is non special, the linear series |2D;| has a base point, which is absurd. Therefore
2D — p; is non special, i.e. p2(D¢) is not contained in a hyperplane, and again dys(0) is
surjective.

Assume that & > 2: we will show that this case cannot occur. The vector 6 is also tangent
top1 + -+ + pr + Clyo—k). Consider the differential of a2 at s, which is identified with
the linear map:

H°(D,,0p,(Dy)) == H'(C,0¢)

arising from the exact sequence
0—0Oc—L—0Op, (Ds) —0

In H%(D,,Op,(Dy)) = Tc,,,s the tangent subspace to py + -+ + pr + Crnya_y) is the
subspace HY(Es, Op,(Dy)), where we have denoted E; = pii1 + -+ + pnie. Therefore
0 € H°(E,, Op,(Dy)). Applying § and then projectivizing we deduce that

[6(0)] € (Es) = (prg1 + -+ pny2) CAs CIP

Since  is not tangent to a,, },(L), we have that [§()] = vy,the vertex of the cone X, and
therefore we see that for every sufficiently general D € |L| there is an effective divisor E of
degree n such that D = E+p+ ¢ and vy, € (E).

This means that dim({Ds + E)) = 2n — 1, equivalently:

3=h%(C,0(Ds + E)) = h°(C,O(L*(—p — q))

for infinitely many p +q. Since h°(C, O(L?)) = 4 this implies that |L?| is composed with an
involution, and this contradicts lemma 1. This proves that F; is a rational normal curve.
Finally note that for every p € Supp(D;)U{vr} the space A; belongs to a 1-dimensional
subfamily of (1) consisting of IP™’s containing p. Correspondingly there is a nonzero tangent
vector 6, € Ts ; such that dx,(0,) : U — % vanishes at p. This implies that p € F,. gq.e.d.

Note that as a consequence of theorem 2 we have that, for each sufficiently general
s € S, Supp(Ds) U {vr} consists of n + 3 distinct points in linearly general position in
Ag, because they lie on the rational normal curve Fy;. The focal curve Fj is actually the
only rational normal curve of A, containing the n + 3 distinct points Supp(D;) U {vr}, and
therefore it could be also defined as such.

For each L € W, denote by U C a;,;,(L) the open subset such that Fy, C A, is a
rational normal curve. Define:

FL=|JF

seU

From theorem 2 it follows that Fy, is an irreducible surface such that
K(C) Cc Frp c Xg

The surface Fy, can be also described as follows. By lemma 1 the morphism @2 : C — IP3
maps C birationally onto a curve pr2(C) of degree 2n + 4 = g + 3 which is contained in
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a quadric cone V, whose generating lines cut on C the pencil |L|. Let o : U — V be
the blow up of V' at the conductor ideal of ¢2(C), and C' C U the proper transform of
¢r2(C). Then the adjoint morphism ¢k, +cr : U — IP maps U onto a surface containing
k(C) which contains a 1-parameter family of rational curves of degree n (the images of the
proper transforms of the lines of V) which cut on x(C') the linear series |L|. It follows that
these curves are the focal curves and g, +c/(U) = Fp.
We define:
Fo = U Fr,

Lew) ,

Note that Fj, # F¢ for each L € W), because otherwise F, = Fyr, for all L' € W,
and the surface Fy, would contain the 2-dimensional family of focal curves. But these curves
would then be linearly equivalent on the desingularization U of Fy,, and therefore they would
define a g2, on C, which is impossible (lemma 1).

Therefore Fo C IP is a 3-dimensional irreducible variety containing x(C) U T, and
intrinsically defined by C. We will call it the variety of first order foci of W} 12

When g = 5 F( is a hypersurface of IP* which we will consider again in §3, where we
will compute its degree.

2. Second order foci

We have seen that the family (1) defines, for each s € S, a closed subscheme Fy C A,
of first order foci. All these subschemes fit together in a closed subscheme F C A which is
defined as

F = D:1(®)

where
@ :7(Ts) — Najsxp)

is the characteristic homomorphism. We obtain a morphism 7 : 7 — S and a diagram:

F C SxIIP
L m (2)
S

From theorem 2 it follows that for all sufficiently general s € S the fibre F, = 7y '(s) is a
rational normal curve of degree n in A;. For such an s we can introduce the second order foci
of the family (1), defined as the first order foci of the family (2) at s. Namely, we consider
the homomorphism

§s : Ts,s @ OF, — NF,

where N, is the normal bundle of Fy in IP, induced by the characteristic map
dxis : Ts.s — H°(Fs,Np,)

(which is the differential of the functorial morphism x; : S° — HilbT defined on an open
neighborhood S° of s in S); then we define the scheme of second order foci of the family (1)
at s as

D, (fa) C F

i.e. as the closed subscheme of Fy defined by the condition rk(&,) < 1.

THEOREM 3 Let s € S be a sufficiently general point. Then we have:

Di(&) =Asn(w(C)UT)
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or, equivalently:
Dl(gs) = Supp(Ds) U {UL}
where L = O(Dy). In particular the scheme of second order foci of the family (1) at s Is a

zero-dimensional closed subscheme of degree n + 3 of F.

Proof

Let p € Supp(Ds) U {vr}. Then, as remarked in the proof of theorem 2, there is an
irreducible curve B C S containing s such that p € Ay for each s’ € B. It follows that
p € Fy for each s € B and therefore there is a nonzero tangent vector 6, € Ts , such that
dx1s(0,) € H°(Fs, Np,) vanishes at p. Therefore p € D;(£;) and we have an inclusion

Supp(Ds) U{vr} C D1(&s)

Since Supp(D;) U {vy} consists of n + 3 distinct points, by the generality of s, the theorem
will follow if we prove that deg(D;(&s)) < n+ 3.
Let’s denote by £ the line bundle of degree 1 on F;. We have a direct sum decomposition:

NFS o~ [6971 én] P [@nfl €n+2]
corresponding to the decomposition:
NF, = (Nx, ® OF,) © Np, )4,

After a choice of a basis of Tg, and of these decompositions the homomorphism & is
represented by a matrix of the form:
A

where A is a n x 2 matrix of sections of /", and B is a (n — 1) x 2 matrix of sections of £"*2.

Note that A is the restriction to Fy of the matrix representing the homomorphism
O, : Tg s ® Op — Np; in particular A has rank one. More precisely choices can be made so
that

tn stn—l
n—1 2in—2
A= 7T
snflt "
where {t, s} is a basis of H°(F}, /). From this expression we see that the i-th row of A is
tnfisifl (t S )
It follows that
D1(&) = Di(N)

where

N =
B

Since the entries of B are sections of £"*2, we deduce that deg(D;(&s)) < n + 3, and the
conclusion follows. g.e.d.

The following corollary is now immediate:
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COROLLARY 4 The family (1) uniquely determines k(C)UT as the closure of the
union of its second order foci. In particular (1) uniquely determines k(C).

3. The genus 5 case

In this section we will assume that C' is a general curve of genus g = 5 and we will
compute the degree of the focal variety F. In this case F¢ is a hypersurface of P = IP*
which can be also described in the following way.

Let ¥ be the net of quadrics of IP* containing x(C) and let A C X be the discriminant
curve, i.e. the locus parametrizing singular quadrics. By the generality of C' we have that
A is a nonsingular quintic curve which parametrizes the rank 4 quadrics Qr, L € W}, and
the congruence (1) consists of all the planes contained in the quadrics Q.

For each p € IP*\k(C) denote by X, C ¥ the pencil of quadrics of 3 containing p. Since
the curve I' is the locus of vertices of the quadrics Qr,, for each vy, € I' the pencil %, is the
tangent line to A at the point [Q].

On a plane A C @ each quadric @ € ¥,, different from @, cuts the focal conic F,
because A N @ is a conic containing {v} U (k(C') N A); therefore ¥, = X, for each p € F.
We therefore conclude that Fo is the closure of the set of points p € IP*\k(C) such that
¥, =X, for some L € W}. Equivalently, denoting by A* C £* the dual curve of A:

Fo={pe P\x(C):3, € A*}
Let’s consider the rational map defined by X:
. 4 *
[%2) 30 P —— =3

Then
Fo = o5 (A%)

Therefore, if A is a general line of IP*, we have:
deg(Fo) = deg(AN Fo) = deg(ps(A) N AY) = 20 deg(ps())) (3)

because deg(A*) = 20.
If t C ¥* is a general line, g, 1(t) is a general quadric of the net ¥. It follows that

deg(ps (X)) = deg(t N s (X)) = deg(pg' (t) N A) =2

Comparing with (3) we deduce that deg(F¢) = 40. Therefore we have proved that following:

THEOREM 5 If C is a general curve of genus 5, the focal hypersurface Fo C IP* has
degree 40.
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