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Introduction

Fix an algebrically closed field k with char(k) = 0. Let C be a projective nonsingular
curve of genus 5 defined over k, and let W 1

4 ⊂ Pic4(C) be the subscheme of divisor classes of
degree 4 and dimension 1. W 1

4 is a curve, which is irreducible and nonsingular of genus 11 if
C is general, and can be identified with the singular locus of the theta divisor W4 ⊂ Pic4(C).
Under the Gauss rational map W 1

4 is mapped 2–1 onto a curve Γ ⊂ IP 4 which is nonsingular
of degree 10 and genus 6. Γ is the set of vertices of the rank four quadrics containing
the canonical image κ(C) ⊂ IP 4. The planes contained in the quadric QL, L ∈ W 1

4 , form
the congruence (2-dimensional family) of 4-secant planes to κ(C). On each plane π of the
congruence we have the set (κ(C) ∪ Γ) ∩ π consisting of 5 points. For a general choice of
π these points are distinct and contained in a unique conic F ⊂ π which can be obtained
as the locus of first order foci of the congruence, whereas the points

(
κ(C) ∪ Γ

)
∩ π are the

second order foci (see below for the definitions of first and second order foci).
This geometrical configuration can be viewed as the first case of a whole series in two

different ways. Firstly we can consider a sufficiently general curve C of genus g ≥ 5, and
the locus W 1

g−1 ⊂ Picg−1(C), which can be identified with the singular locus of the theta
divisor Wg−1. W 1

g−1 has pure dimension g − 4; the projectivized tangent space at a point
L ∈ W 1

g−1\W 2
g−1 is the linear space vL ⊂ IP g−1 of dimension g− 5 vertex of the quadric QL

of rank four containing the canonical curve κ(C), which is the projectivized tangent cone to
Wg−1 at L.

Each quadric QL has two rulings of IP g−3’s, and when L varies in W 1
g−1\W 2

g−1 they
form a family of dimension g − 3. On each sufficiently general IP g−3 of the family there is
a rational normal curve of first order foci. It has been shown in [CS] that the curve C can
be recovered from this family, and this has been used to give a proof of Torelli’s theorem.

Another extension of the genus 5 configuration can be introduced naturally, and it is the
object of the present paper. Let’s consider, for any odd g = 2n+1, n ≥ 2, a sufficiently gen-
eral projective irreducible nonsingular curve C of genus g, and the locus W 1

n+2 ⊂ Picn+2(C).
By Brill-Noether theory it is known that W 1

n+2 is a nonsingular irreducible curve, whose
genus has been computed by Kempf [K2] and by Pirola [P] (g = 11 for n = 2). For each
L ∈ W 1

n+2 the projectivized tangent cone to Wn+2 at L is a variety XL ⊂ IP 2n, of degree n
and dimension n + 1, and

XL =
⋃

D∈|L|

〈D〉

i.e. XL is described as a 1-dimensional family of n-spaces, (n + 2)-secant to κ(C). The
vertex vL of XL varies in a curve Γ ⊂ IP 2n, which is the Gauss image of W 1

n+2. The family
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of all the n-spaces 〈D〉, as L varies in W 1
n+2, is 2-dimensional, i.e. a congruence. On each

sufficiently general 〈D〉 belonging to the congruence we consider the locus of first order foci
and we prove that it is a rational normal curve containing Supp(Ds) ∪ {vL} (theorem 2).

As D varies the first order foci fill a 3-dimensional irreducible variety FC containing
κ(C) ∪ Γ. This variety is also the union of the 1-dimensional family of surfaces FL swept
by the focal curves as D varies in a linear pencil |L|, L ∈ W 1

n+2. We completely explain the
geometrical meaning of these surfaces.

We then consider the second order foci of the above family of n-spaces, proving that on
every sufficiently general 〈D〉 they are the n + 3 points

(
κ(C) ∪ Γ

)
∩ 〈D〉 (theorem 3). This

allows to reconstruct the curve C from the congruence. In the final section we consider the
genus 5 case, proving that FC is a hypersurface of degree 40 in IP 4 (theorem 5).

1. First order foci

For a fixed integer n ≥ 2 let C be a projective irreducible nonsingular and non hyperel-
liptic curve of genus g = 2n + 1 and let IP = IP (V ) ∼= IP 2n, where V = H1(C,OC). Denote
by

κ : C → IP

the canonical embedding of C, defined by the complete canonical linear series |K|.
As customary, we will use the symbol gr

d to mean “a linear series of dimension r and
degree d”.

We denote by Cd the d-th symmetric product of C and by Wd(C) the image of the
Abel-Jacobi map

αd : Cd → Picd(C)

Moreover we let
Cr

d = {D ∈ Cd : h0(D) ≥ r + 1}

and
W r

d = W r
d (C) = αd(Cr

d) = {L ∈ Picd(C) : h0(L) ≥ r + 1}

We will consider Cr
d and W r

d with their natural scheme structure.
In particular we will consider W 1

n+2. By Brill-Noether theory W 1
n+2 6= ∅ and all its

components have dimension at least one. Moreover, if C ∈ Mg is sufficiently general then
W 1

n+2 is an irreducible and nonsingular curve.

LEMMA 1 If C is a general curve of genus g = 2n + 1 then for every L ∈ W 1
n+2 the

linear series |L| is a base point free pencil, H1(C,L2) = 0 and |L2| is a g3
g+3 not composed

with an involution.

Proof
If |L| has a base point p then L(−p) ∈ W 1

n+1, and this contradicts the generality of C.
Similarly |L| cannot have dimension bigger than one without contradicting the generality of
C.

H1(C,L2) = 0 follows from H0(C,KL−2) ∼= ker(µL), where

µL : H0(C,L)⊗H0(C,KL−1) → H0(C,K)

is the Petri map, and since this map is injective by the generality of C (see [G]).
By Riemann-Roch h0(C,L2) = 4. Then ϕL2 : C → IP 3 is not composed with an

irrational involution by the generality of C. Similarly ϕL2 is not composed with a rational
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involution because by the generality of C there is no g1
h with h < n + 2, a contradiction.

q.e.d.

We will henceforth assume that C is a general curve of genus g, so that W 1
n+2 has

the above stated properties. It follows that αn+2 : C1
n+2 → W 1

n+2 is a IP 1-bundle, and in
particular C1

n+2 is an irreducible nonsingular surface, which we will denote by S.
For every s ∈ S we let Ds be the divisor of degree n + 2 parametrized by s and

Λs = 〈Ds〉 ⊂ IP its linear span, which is a IPn, (n + 2)-secant to the curve κ(C). We
therefore have a two-dimensional family of (n + 2)-secant IPn’s parametrized by S:

Λ ⊂ S × IP
↓ π
S

(1)

Let’s recall how this family is constructed. Consider the universal divisor of degree n + 2:

Dn+2 ⊂ Cn+2 × C

and let DS = Dn+2 ∩ (S × C). Denote by p : S × C → S the projection. We have a
homomorphism of locally free sheaves on S:

R1p∗OS×C → R1p∗OS×C(DS) → 0

whose kernel is a locally free subsheaf F ⊂ R1p∗OS×C
∼= H1(C,OC) ⊗ OS of rank n + 1.

Taking the associated projective bundles we get

Λ = IP (F) ⊂ IP (R1p∗OS×C) = S × IP

For each point L ∈ W 1
n+2 we have the 1-dimensional subfamily of (1) parametrized by

the fibre α−1(L), i.e. consisting of the Λs = 〈Ds〉 when Ds varies in the linear pencil |L|.
Their union XL := ∪s∈α−1(L)Λs is an irreducible variety of dimension n+1 and degree n (a
rational scroll of minimal degree) containing the canonical curve κ(C). It can be constructed
as follows.
Let {σ1, σ2} be a basis of H0(C,L) and {τ1, . . . , τn} a basis of H0(C,KL−1). Then XL is
the variety defined by the

(
n
2

)
quadrics obtained as maximal minors of the matrix of linear

forms: (
Z11 Z12 · · · Z1n

Z21 Z22 · · · Z2n

)
where Zij = σiτj . Since the Brill-Noether map

µL : H0(C,L)⊗H0(C,KL−1) → H0(C,K)

is injective, it follows that the Zij ’s are linearly independent and therefore XL is a cone with
vertex a point vL. A theorem of Kempf [K1] describes XL as the projectivized tangent cone
to Wn+2 at L.
Note that in the case g = 5 the variety XL is a quadric of rank 4 containing the canonical
curve.

As L varies in W 1
n+2 we obtain a 1-dimensional family of (n + 1)-dimensional cones XL

whose vertices describe a curve Γ ⊂ IP . This curve is the Gauss image of W 1
n+2, because for

each L ∈ W 1
n+2 the vertex vL is the projectivized tangent line to W 1

n+2 at L. We have the
obvious equality: ⋃

L∈W 1
n+2

XL = p2(Λ)

where p2 : Λ → IP is the projection.
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Let Λ = Λs, s ∈ S, be a member of the family (1). We have Λ = IP (U) where U ⊂ V
is a vector subspace of dimension n + 1. The normal bundle of Λ in IP is

NΛ =
V

U
⊗k OΛ(1)

and
H0(Λ, NΛ) = Hom(U,

V

U
)

Associated to the family (1) we have a functorial morphism χ : S → Gn(IP ) whose differential
at s is a linear map (the characteristic map)

dχs : TS,s → H0(Λ, NΛ)

The characteristic map induces a homomorphism of locally free sheaves on Λ:

Φs : TS,s ⊗k OΛ → NΛ

We define the scheme of first order foci (or the focal scheme) of the family (1) at s to be

Fs = D1(Φs) = {x ∈ Λs : rkx(Φs) ≤ 1}

Its points are called first order foci of the family (1) at s.

THEOREM 2 For every L ∈ W 1
n+2 and for all sufficiently general s ∈ α−1

n+2(L), Fs is
a rational normal curve (of degree n) of Λs containing Supp(Ds) ∪ {vL}.

Proof
Since dim(TS,s) = 2, Φs is defined by a n×2 matrix of linear forms on Λ. Therefore, to

show that Fs is a rational normal curve it will be sufficient to show that Φs is 1-generic (see
[E], theorem 2.1 and section 2 of [CS]). This means that for every tangent vector θ ∈ TS,s\{0}
the element dχs(θ) ∈ H0(Λ, NΛ), interpreted as a homomorphism dχs(θ) : U → V

U , is
surjective.

Consider the first order deformation of Λs defined by dχs(θ):

Λε ⊂ Spec(k[ε])× IP
↓

Spec(k[ε])

The surjectivity of dχs(θ) is equivalent to the fact that p2(Λε) ⊂ IP is not contained in a
hyperplane. But

p2(Λε) ⊃ p2(Dε)

where Dε ⊂ Spec(k[ε]) × IP is the first order deformation of the divisor Ds defined by θ.
Note that p2(Dε) is a curvilinear scheme corresponding to a divisor on C satisfying:

Ds ≤ p2(Dε) ≤ 2Ds

Assume first that θ is tangent to α−1
n+2(L) at s, equivalently that the family Dε deforms

Ds in the linear pencil |L|. Then, letting ϕL : C → IP 1 be the morphism defined by the
pencil, we have p2(Dε) = ϕ∗

L(θ), where we have identified θ with a curvilinear subscheme
of IP 1 supported at the point s ∈ IP 1. Since |Ds| = |L| is base point free, it follows that
p2(Dε) = 2Ds, and therefore p2(Λε) is contained in a hyperplane if and only if 2Ds is a
special divisor. But this is not possible by lemma 1; hence dχs(θ) is surjective in this case.
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Assume now that θ ∈ TS,s\{0} is not tangent to α−1
n+2(L) at s. We can write:

p2(Dε) = p1 + · · ·+ pk + 2(pk+1 + · · ·+ pn+2)

where Ds = p1 + · · ·+ pn+2, and k ≥ 0.
If k = 0 we conclude as in the previous case that dχs(θ) is surjective.
If k = 1 then p2(Dε) = p1 + 2(p2 + · · ·+ pn+2) = 2Ds − p1. If this is a special divisor then,
since 2Ds is non special, the linear series |2Ds| has a base point, which is absurd. Therefore
2Ds − p1 is non special, i.e. p2(Dε) is not contained in a hyperplane, and again dχs(θ) is
surjective.
Assume that k ≥ 2: we will show that this case cannot occur. The vector θ is also tangent
to p1 + · · ·+ pk + C(n+2−k). Consider the differential of αn+2 at s, which is identified with
the linear map:

H0(Ds,ODs(Ds))
δ−→ H1(C,OC)

arising from the exact sequence

0 → OC → L → ODs(Ds) → 0

In H0(Ds,ODs(Ds)) = TCn+2,s the tangent subspace to p1 + · · · + pk + C(n+2−k) is the
subspace H0(Es,OEs

(Ds)), where we have denoted Es = pk+1 + · · · + pn+2. Therefore
θ ∈ H0(Es,OEs

(Ds)). Applying δ and then projectivizing we deduce that

[δ(θ)] ∈ 〈Es〉 = 〈pk+1 + · · ·+ pn+2〉 ⊂ Λs ⊂ IP

Since θ is not tangent to α−1
n+2(L), we have that [δ(θ)] = vL,the vertex of the cone XL, and

therefore we see that for every sufficiently general D ∈ |L| there is an effective divisor E of
degree n such that D = E + p + q and vL ∈ 〈E〉.
This means that dim(〈Ds + E〉) = 2n− 1, equivalently:

3 = h0(C,O(Ds + E)) = h0(C,O(L2(−p− q))

for infinitely many p+ q. Since h0(C,O(L2)) = 4 this implies that |L2| is composed with an
involution, and this contradicts lemma 1. This proves that Fs is a rational normal curve.

Finally note that for every p ∈ Supp(Ds)∪{vL} the space Λs belongs to a 1-dimensional
subfamily of (1) consisting of IPn’s containing p. Correspondingly there is a nonzero tangent
vector θp ∈ TS,s such that dχs(θp) : U → V

U vanishes at p. This implies that p ∈ Fs. q.e.d.

Note that as a consequence of theorem 2 we have that, for each sufficiently general
s ∈ S, Supp(Ds) ∪ {vL} consists of n + 3 distinct points in linearly general position in
Λs, because they lie on the rational normal curve Fs. The focal curve Fs is actually the
only rational normal curve of Λs containing the n + 3 distinct points Supp(Ds)∪ {vL}, and
therefore it could be also defined as such.

For each L ∈ W 1
n+2 denote by U ⊂ α−1

n+2(L) the open subset such that Fs ⊂ Λs is a
rational normal curve. Define:

FL =
⋃
s∈U

Fs

From theorem 2 it follows that FL is an irreducible surface such that

κ(C) ⊂ FL ⊂ XL

The surface FL can be also described as follows. By lemma 1 the morphism ϕL2 : C → IP 3

maps C birationally onto a curve ϕL2(C) of degree 2n + 4 = g + 3 which is contained in
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a quadric cone V , whose generating lines cut on C the pencil |L|. Let σ : U → V be
the blow up of V at the conductor ideal of ϕL2(C), and C ′ ⊂ U the proper transform of
ϕL2(C). Then the adjoint morphism ϕKU+C′ : U → IP maps U onto a surface containing
κ(C) which contains a 1-parameter family of rational curves of degree n (the images of the
proper transforms of the lines of V) which cut on κ(C) the linear series |L|. It follows that
these curves are the focal curves and ϕKU+C′(U) = FL.

We define:
FC =

⋃
L∈W 1

n+2

FL

Note that FL 6= FC for each L ∈ W 1
n+2 because otherwise FL = FL′ for all L′ ∈ W 1

n+2,
and the surface FL would contain the 2-dimensional family of focal curves. But these curves
would then be linearly equivalent on the desingularization U of FL, and therefore they would
define a g2

n+2 on C, which is impossible (lemma 1).
Therefore FC ⊂ IP is a 3-dimensional irreducible variety containing κ(C) ∪ Γ, and

intrinsically defined by C. We will call it the variety of first order foci of W 1
n+2.

When g = 5 FC is a hypersurface of IP 4 which we will consider again in §3, where we
will compute its degree.

2. Second order foci

We have seen that the family (1) defines, for each s ∈ S, a closed subscheme Fs ⊂ Λs

of first order foci. All these subschemes fit together in a closed subscheme F ⊂ Λ which is
defined as

F = D1(Φ)

where
Φ : π∗(TS) → NΛ/(S×IP )

is the characteristic homomorphism. We obtain a morphism π1 : F → S and a diagram:

F ⊂ S × IP
↓ π1

S
(2)

From theorem 2 it follows that for all sufficiently general s ∈ S the fibre Fs = π−1
1 (s) is a

rational normal curve of degree n in Λs. For such an s we can introduce the second order foci
of the family (1), defined as the first order foci of the family (2) at s. Namely, we consider
the homomorphism

ξs : TS,s ⊗OFs → NFs

where NFs
is the normal bundle of Fs in IP , induced by the characteristic map

dχ1s : TS,s → H0(Fs, NFs
)

(which is the differential of the functorial morphism χ1 : S◦ → HilbIP defined on an open
neighborhood S◦ of s in S); then we define the scheme of second order foci of the family (1)
at s as

D1(ξs) ⊂ Fs

i.e. as the closed subscheme of Fs defined by the condition rk(ξs) ≤ 1.

THEOREM 3 Let s ∈ S be a sufficiently general point. Then we have:

D1(ξs) = Λs ∩ (κ(C) ∪ Γ)
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or, equivalently:
D1(ξs) = Supp(Ds) ∪ {vL}

where L = O(Ds). In particular the scheme of second order foci of the family (1) at s is a
zero-dimensional closed subscheme of degree n + 3 of Fs.

Proof
Let p ∈ Supp(Ds) ∪ {vL}. Then, as remarked in the proof of theorem 2, there is an

irreducible curve B ⊂ S containing s such that p ∈ Λs′ for each s′ ∈ B. It follows that
p ∈ Fs′ for each s′ ∈ B and therefore there is a nonzero tangent vector θp ∈ TS,s such that
dχ1s(θp) ∈ H0(Fs, NFs

) vanishes at p. Therefore p ∈ D1(ξs) and we have an inclusion

Supp(Ds) ∪ {vL} ⊂ D1(ξs)

Since Supp(Ds) ∪ {vL} consists of n + 3 distinct points, by the generality of s, the theorem
will follow if we prove that deg(D1(ξs)) ≤ n + 3.

Let’s denote by ` the line bundle of degree 1 on Fs. We have a direct sum decomposition:

NFs
∼=

[
⊕n `n

]
⊕

[
⊕n−1 `n+2

]
corresponding to the decomposition:

NFs
∼= (NΛs

⊗OFs
)⊕NFs/Λs

After a choice of a basis of TS,s and of these decompositions the homomorphism ξs is
represented by a matrix of the form:

M =
(

A
B

)
where A is a n× 2 matrix of sections of `n, and B is a (n− 1)× 2 matrix of sections of `n+2.

Note that A is the restriction to Fs of the matrix representing the homomorphism
Φs : TS,s ⊗OΛ → NΛ; in particular A has rank one. More precisely choices can be made so
that

A =


tn stn−1

stn−1 s2tn−2

· · · · · ·
sn−1t sn


where {t, s} is a basis of H0(Fs, `). From this expression we see that the i-th row of A is

tn−isi−1 ( t s )

It follows that
D1(ξs) = D1(N)

where

N =

 t s

B


Since the entries of B are sections of `n+2, we deduce that deg(D1(ξs)) ≤ n + 3, and the
conclusion follows. q.e.d.

The following corollary is now immediate:
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COROLLARY 4 The family (1) uniquely determines κ(C) ∪ Γ as the closure of the
union of its second order foci. In particular (1) uniquely determines κ(C).

3. The genus 5 case

In this section we will assume that C is a general curve of genus g = 5 and we will
compute the degree of the focal variety FC . In this case FC is a hypersurface of IP ∼= IP 4

which can be also described in the following way.
Let Σ be the net of quadrics of IP 4 containing κ(C) and let ∆ ⊂ Σ be the discriminant

curve, i.e. the locus parametrizing singular quadrics. By the generality of C we have that
∆ is a nonsingular quintic curve which parametrizes the rank 4 quadrics QL, L ∈ W 1

4 , and
the congruence (1) consists of all the planes contained in the quadrics QL.

For each p ∈ IP 4\κ(C) denote by Σp ⊂ Σ the pencil of quadrics of Σ containing p. Since
the curve Γ is the locus of vertices of the quadrics QL, for each vL ∈ Γ the pencil ΣvL

is the
tangent line to ∆ at the point [QL].

On a plane Λ ⊂ QL each quadric Q ∈ ΣvL
different from QL cuts the focal conic F ,

because Λ ∩Q is a conic containing {vL} ∪ (κ(C) ∩ Λ); therefore Σp = ΣvL
for each p ∈ F .

We therefore conclude that FC is the closure of the set of points p ∈ IP 4\κ(C) such that
Σp = ΣvL

for some L ∈ W 1
4 . Equivalently, denoting by ∆∗ ⊂ Σ∗ the dual curve of ∆:

FC = {p ∈ IP 4\κ(C) : Σp ∈ ∆∗}

Let’s consider the rational map defined by Σ:

ϕΣ : IP 4 −−− → Σ∗

Then
FC = ϕ−1

Σ (∆∗)

Therefore, if λ is a general line of IP 4, we have:

deg(FC) = deg(λ ∩ FC) = deg(ϕΣ(λ) ∩∆∗) = 20 deg(ϕΣ(λ)) (3)

because deg(∆∗) = 20.
If t ⊂ Σ∗ is a general line, ϕ−1

Σ (t) is a general quadric of the net Σ. It follows that

deg(ϕΣ(λ)) = deg(t ∩ ϕΣ(λ)) = deg(ϕ−1
Σ (t) ∩ λ) = 2

Comparing with (3) we deduce that deg(FC) = 40. Therefore we have proved that following:

THEOREM 5 If C is a general curve of genus 5, the focal hypersurface FC ⊂ IP 4 has
degree 40.
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