ON THE GEOMETRY OF CANONICAL CURVES OF ODD GENUS

Ciro Ciliberto and Edoardo Sernesi *

Dedicated to Robin Hartshorne on his 60th birthday

Introduction

Fix an algebrically closed field \mathbf{k} with $\operatorname{char}(\mathbf{k}) = 0$. Let C be a projective nonsingular curve of genus 5 defined over \mathbf{k} , and let $W_4^1 \subset \operatorname{Pic}^4(C)$ be the subscheme of divisor classes of degree 4 and dimension 1. W_4^1 is a curve, which is irreducible and nonsingular of genus 11 if C is general, and can be identified with the singular locus of the theta divisor $W_4 \subset \operatorname{Pic}^4(C)$. Under the Gauss rational map W_4^1 is mapped 2–1 onto a curve $\Gamma \subset I\!\!P^4$ which is nonsingular of degree 10 and genus 6. Γ is the set of vertices of the rank four quadrics containing the canonical image $\kappa(C) \subset I\!\!P^4$. The planes contained in the quadric Q_L , $L \in W_4^1$, form the congruence (2-dimensional family) of 4-secant planes to $\kappa(C)$. On each plane π of the congruence we have the set $(\kappa(C) \cup \Gamma) \cap \pi$ consisting of 5 points. For a general choice of π these points are distinct and contained in a unique conic $F \subset \pi$ which can be obtained as the locus of first order foci of the congruence, whereas the points $(\kappa(C) \cup \Gamma) \cap \pi$ are the second order foci (see below for the definitions of first and second order foci).

This geometrical configuration can be viewed as the first case of a whole series in two different ways. Firstly we can consider a sufficiently general curve C of genus $g \ge 5$, and the locus $W_{g-1}^1 \subset \operatorname{Pic}^{g-1}(C)$, which can be identified with the singular locus of the theta divisor W_{g-1} . W_{g-1}^1 has pure dimension g-4; the projectivized tangent space at a point $L \in W_{g-1}^1 \setminus W_{g-1}^2$ is the linear space $v_L \subset I\!\!P^{g-1}$ of dimension g-5 vertex of the quadric Q_L of rank four containing the canonical curve $\kappa(C)$, which is the projectivized tangent cone to W_{g-1} at L.

Each quadric Q_L has two rulings of $I\!\!P^{g-3}$'s, and when L varies in $W_{g-1}^1 \setminus W_{g-1}^2$ they form a family of dimension g-3. On each sufficiently general $I\!\!P^{g-3}$ of the family there is a rational normal curve of first order foci. It has been shown in [CS] that the curve C can be recovered from this family, and this has been used to give a proof of Torelli's theorem.

Another extension of the genus 5 configuration can be introduced naturally, and it is the object of the present paper. Let's consider, for any odd g = 2n + 1, $n \ge 2$, a sufficiently general projective irreducible nonsingular curve C of genus g, and the locus $W_{n+2}^1 \subset \operatorname{Pic}^{n+2}(C)$. By Brill-Noether theory it is known that W_{n+2}^1 is a nonsingular irreducible curve, whose genus has been computed by Kempf [K2] and by Pirola [P] (g = 11 for n = 2). For each $L \in W_{n+2}^1$ the projectivized tangent cone to W_{n+2} at L is a variety $X_L \subset \mathbb{P}^{2n}$, of degree n and dimension n + 1, and

$$X_L = \bigcup_{D \in |L|} \langle D \rangle$$

i.e. X_L is described as a 1-dimensional family of *n*-spaces, (n + 2)-secant to $\kappa(C)$. The vertex v_L of X_L varies in a curve $\Gamma \subset \mathbb{P}^{2n}$, which is the Gauss image of W_{n+2}^1 . The family

^{*} Both authors are members of the research project "Geometria Algebrica" of MURST

of all the *n*-spaces $\langle D \rangle$, as *L* varies in W_{n+2}^1 , is 2-dimensional, i.e. a congruence. On each sufficiently general $\langle D \rangle$ belonging to the congruence we consider the locus of first order foci and we prove that it is a rational normal curve containing $\text{Supp}(D_s) \cup \{v_L\}$ (theorem 2).

As D varies the first order foci fill a 3-dimensional irreducible variety F_C containing $\kappa(C) \cup \Gamma$. This variety is also the union of the 1-dimensional family of surfaces F_L swept by the focal curves as D varies in a linear pencil $|L|, L \in W_{n+2}^1$. We completely explain the geometrical meaning of these surfaces.

We then consider the second order foci of the above family of *n*-spaces, proving that on every sufficiently general $\langle D \rangle$ they are the n + 3 points $(\kappa(C) \cup \Gamma) \cap \langle D \rangle$ (theorem 3). This allows to reconstruct the curve *C* from the congruence. In the final section we consider the genus 5 case, proving that F_C is a hypersurface of degree 40 in \mathbb{I}^{P^4} (theorem 5).

1. First order foci

For a fixed integer $n \ge 2$ let C be a projective irreducible nonsingular and non hyperelliptic curve of genus g = 2n + 1 and let $I\!\!P = I\!\!P(V) \cong I\!\!P^{2n}$, where $V = H^1(C, \mathcal{O}_C)$. Denote by

 $\kappa: C \to I\!\!P$

the canonical embedding of C, defined by the complete canonical linear series |K|.

As customary, we will use the symbol g_d^r to mean "a linear series of dimension r and degree d".

We denote by C_d the *d*-th symmetric product of *C* and by $W_d(C)$ the image of the Abel-Jacobi map

$$\alpha_d: C_d \to \operatorname{Pic}^d(C)$$

Moreover we let

$$C_d^r = \{ D \in C_d : h^0(D) \ge r+1 \}$$

and

$$W_d^r = W_d^r(C) = \alpha_d(C_d^r) = \{L \in \operatorname{Pic}^d(C) : h^0(L) \ge r+1\}$$

We will consider C_d^r and W_d^r with their natural scheme structure.

In particular we will consider W_{n+2}^1 . By Brill-Noether theory $W_{n+2}^1 \neq \emptyset$ and all its components have dimension at least one. Moreover, if $C \in \mathcal{M}_g$ is sufficiently general then W_{n+2}^1 is an irreducible and nonsingular curve.

LEMMA 1 If C is a general curve of genus g = 2n + 1 then for every $L \in W_{n+2}^1$ the linear series |L| is a base point free pencil, $H^1(C, L^2) = 0$ and $|L^2|$ is a g_{g+3}^3 not composed with an involution.

Proof

If |L| has a base point p then $L(-p) \in W_{n+1}^1$, and this contradicts the generality of C. Similarly |L| cannot have dimension bigger than one without contradicting the generality of C.

 $H^1(C, L^2) = 0$ follows from $H^0(C, KL^{-2}) \cong \ker(\mu_L)$, where

$$\mu_L: H^0(C,L) \otimes H^0(C,KL^{-1}) \to H^0(C,K)$$

is the Petri map, and since this map is injective by the generality of C (see [G]).

By Riemann-Roch $h^0(C, L^2) = 4$. Then $\varphi_{L^2} : C \to \mathbb{I}P^3$ is not composed with an irrational involution by the generality of C. Similarly φ_{L^2} is not composed with a rational

3

involution because by the generality of C there is no g_h^1 with h < n + 2, a contradiction. q.e.d.

We will henceforth assume that C is a general curve of genus g, so that W_{n+2}^1 has the above stated properties. It follows that $\alpha_{n+2}: C_{n+2}^1 \to W_{n+2}^1$ is a \mathbb{I}^{p_1} -bundle, and in particular C_{n+2}^1 is an irreducible nonsingular surface, which we will denote by S.

For every $s \in S$ we let D_s be the divisor of degree n + 2 parametrized by s and $\Lambda_s = \langle D_s \rangle \subset I\!\!P$ its linear span, which is a $I\!\!P^n$, (n+2)-secant to the curve $\kappa(C)$. We therefore have a two-dimensional family of (n+2)-secant $I\!\!P^n$'s parametrized by S:

$$\frac{\Lambda}{\downarrow \pi} \subset S \times I\!\!P \\
S \qquad (1)$$

Let's recall how this family is constructed. Consider the universal divisor of degree n + 2:

$$\mathbf{D}_{n+2} \subset C_{n+2} \times C$$

and let $\mathbf{D}_S = \mathbf{D}_{n+2} \cap (S \times C)$. Denote by $p : S \times C \to S$ the projection. We have a homomorphism of locally free sheaves on S:

$$R^1 p_* \mathcal{O}_{S \times C} \to R^1 p_* \mathcal{O}_{S \times C}(\mathbf{D}_S) \to 0$$

whose kernel is a locally free subsheaf $\mathcal{F} \subset R^1 p_* \mathcal{O}_{S \times C} \cong H^1(C, \mathcal{O}_C) \otimes \mathcal{O}_S$ of rank n + 1. Taking the associated projective bundles we get

$$\underline{\Lambda} = I\!\!P(\mathcal{F}) \subset I\!\!P(R^1 p_* \mathcal{O}_{S \times C}) = S \times I\!\!P$$

For each point $L \in W_{n+2}^1$ we have the 1-dimensional subfamily of (1) parametrized by the fibre $\alpha^{-1}(L)$, i.e. consisting of the $\Lambda_s = \langle D_s \rangle$ when D_s varies in the linear pencil |L|. Their union $X_L := \bigcup_{s \in \alpha^{-1}(L)} \Lambda_s$ is an irreducible variety of dimension n+1 and degree n (a rational scroll of minimal degree) containing the canonical curve $\kappa(C)$. It can be constructed as follows.

Let $\{\sigma_1, \sigma_2\}$ be a basis of $H^0(C, L)$ and $\{\tau_1, \ldots, \tau_n\}$ a basis of $H^0(C, KL^{-1})$. Then X_L is the variety defined by the $\binom{n}{2}$ quadrics obtained as maximal minors of the matrix of linear forms:

$$\begin{pmatrix} Z_{11} & Z_{12} & \cdots & Z_{1n} \\ Z_{21} & Z_{22} & \cdots & Z_{2n} \end{pmatrix}$$

where $Z_{ij} = \sigma_i \tau_j$. Since the Brill-Noether map

$$\mu_L: H^0(C,L) \otimes H^0(C,KL^{-1}) \to H^0(C,K)$$

is injective, it follows that the Z_{ij} 's are linearly independent and therefore X_L is a cone with vertex a point v_L . A theorem of Kempf [K1] describes X_L as the projectivized tangent cone to W_{n+2} at L.

Note that in the case g = 5 the variety X_L is a quadric of rank 4 containing the canonical curve.

As L varies in W_{n+2}^1 we obtain a 1-dimensional family of (n+1)-dimensional cones X_L whose vertices describe a curve $\Gamma \subset \mathbb{P}$. This curve is the Gauss image of W_{n+2}^1 , because for each $L \in W_{n+2}^1$ the vertex v_L is the projectivized tangent line to W_{n+2}^1 at L. We have the obvious equality:

$$\bigcup_{L \in W_{n+2}^1} X_L = p_2(\underline{\Lambda})$$

where $p_2 : \underline{\Lambda} \to I\!\!P$ is the projection.

Let $\Lambda = \Lambda_s$, $s \in S$, be a member of the family (1). We have $\Lambda = I\!\!P(U)$ where $U \subset V$ is a vector subspace of dimension n + 1. The normal bundle of Λ in $I\!\!P$ is

$$N_{\Lambda} = \frac{V}{U} \otimes_{\mathbf{k}} \mathcal{O}_{\Lambda}(1)$$

and

$$H^0(\Lambda, N_\Lambda) = \operatorname{Hom}(U, \frac{V}{U})$$

Associated to the family (1) we have a functorial morphism $\chi : S \to G_n(\mathbb{P})$ whose differential at s is a linear map (the characteristic map)

$$d\chi_s: T_{S,s} \to H^0(\Lambda, N_\Lambda)$$

The characteristic map induces a homomorphism of locally free sheaves on Λ :

$$\Phi_s: T_{S,s} \otimes_{\mathbf{k}} \mathcal{O}_{\Lambda} \to N_{\Lambda}$$

We define the scheme of first order foci (or the focal scheme) of the family (1) at s to be

$$F_s = D_1(\Phi_s) = \{ x \in \Lambda_s : \operatorname{rk}_x(\Phi_s) \le 1 \}$$

Its points are called *first order foci* of the family (1) at s.

THEOREM 2 For every $L \in W_{n+2}^1$ and for all sufficiently general $s \in \alpha_{n+2}^{-1}(L)$, F_s is a rational normal curve (of degree n) of Λ_s containing $\text{Supp}(D_s) \cup \{v_L\}$.

Proof

Since dim $(T_{S,s}) = 2$, Φ_s is defined by a $n \times 2$ matrix of linear forms on Λ . Therefore, to show that F_s is a rational normal curve it will be sufficient to show that Φ_s is 1-generic (see [E], theorem 2.1 and section 2 of [CS]). This means that for every tangent vector $\theta \in T_{S,s} \setminus \{0\}$ the element $d\chi_s(\theta) \in H^0(\Lambda, N_\Lambda)$, interpreted as a homomorphism $d\chi_s(\theta) : U \to \frac{V}{U}$, is surjective.

Consider the first order deformation of Λ_s defined by $d\chi_s(\theta)$:

$$\begin{array}{rcl} \underline{\Lambda}_{\epsilon} & \subset & \operatorname{Spec}(\mathbf{k}[\epsilon]) \times I\!\!P \\ \downarrow & & \\ \operatorname{Spec}(\mathbf{k}[\epsilon]) & & \end{array}$$

The surjectivity of $d\chi_s(\theta)$ is equivalent to the fact that $p_2(\underline{\Lambda}_{\epsilon}) \subset \mathbb{I}^p$ is not contained in a hyperplane. But

$$p_2(\underline{\Lambda}_{\epsilon}) \supset p_2(\mathbf{D}_{\epsilon})$$

where $\mathbf{D}_{\epsilon} \subset \operatorname{Spec}(\mathbf{k}[\epsilon]) \times \mathbb{I}^{p}$ is the first order deformation of the divisor D_{s} defined by θ . Note that $p_{2}(\mathbf{D}_{\epsilon})$ is a curvilinear scheme corresponding to a divisor on C satisfying:

$$D_s \leq p_2(\mathbf{D}_{\epsilon}) \leq 2D_s$$

Assume first that θ is tangent to $\alpha_{n+2}^{-1}(L)$ at s, equivalently that the family \mathbf{D}_{ϵ} deforms D_s in the linear pencil |L|. Then, letting $\varphi_L : C \to \mathbb{I}^{p_1}$ be the morphism defined by the pencil, we have $p_2(\mathbf{D}_{\epsilon}) = \varphi_L^*(\theta)$, where we have identified θ with a curvilinear subscheme of \mathbb{I}^{p_1} supported at the point $s \in \mathbb{I}^{p_1}$. Since $|D_s| = |L|$ is base point free, it follows that $p_2(\mathbf{D}_{\epsilon}) = 2D_s$, and therefore $p_2(\underline{\Lambda}_{\epsilon})$ is contained in a hyperplane if and only if $2D_s$ is a special divisor. But this is not possible by lemma 1; hence $d\chi_s(\theta)$ is surjective in this case.

Assume now that $\theta \in T_{S,s} \setminus \{0\}$ is not tangent to $\alpha_{n+2}^{-1}(L)$ at s. We can write:

$$p_2(\mathbf{D}_{\epsilon}) = p_1 + \dots + p_k + 2(p_{k+1} + \dots + p_{n+2})$$

where $D_s = p_1 + \cdots + p_{n+2}$, and $k \ge 0$.

If k = 0 we conclude as in the previous case that $d\chi_s(\theta)$ is surjective.

If k = 1 then $p_2(\mathbf{D}_{\epsilon}) = p_1 + 2(p_2 + \dots + p_{n+2}) = 2D_s - p_1$. If this is a special divisor then, since $2D_s$ is non special, the linear series $|2D_s|$ has a base point, which is absurd. Therefore $2D_s - p_1$ is non special, i.e. $p_2(\mathbf{D}_{\epsilon})$ is not contained in a hyperplane, and again $d\chi_s(\theta)$ is surjective.

Assume that $k \geq 2$: we will show that this case cannot occur. The vector θ is also tangent to $p_1 + \cdots + p_k + C_{(n+2-k)}$. Consider the differential of α_{n+2} at s, which is identified with the linear map:

$$H^0(D_s, \mathcal{O}_{D_s}(D_s)) \xrightarrow{\delta} H^1(C, \mathcal{O}_C)$$

arising from the exact sequence

$$0 \to \mathcal{O}_C \to L \to \mathcal{O}_{D_s}(D_s) \to 0$$

In $H^0(D_s, \mathcal{O}_{D_s}(D_s)) = T_{C_{n+2},s}$ the tangent subspace to $p_1 + \cdots + p_k + C_{(n+2-k)}$ is the subspace $H^0(E_s, \mathcal{O}_{E_s}(D_s))$, where we have denoted $E_s = p_{k+1} + \cdots + p_{n+2}$. Therefore $\theta \in H^0(E_s, \mathcal{O}_{E_s}(D_s))$. Applying δ and then projectivizing we deduce that

$$[\delta(\theta)] \in \langle E_s \rangle = \langle p_{k+1} + \dots + p_{n+2} \rangle \subset \Lambda_s \subset I\!\!P$$

Since θ is not tangent to $\alpha_{n+2}^{-1}(L)$, we have that $[\delta(\theta)] = v_L$, the vertex of the cone X_L , and therefore we see that for every sufficiently general $D \in |L|$ there is an effective divisor E of degree n such that D = E + p + q and $v_L \in \langle E \rangle$.

This means that $\dim(\langle D_s + E \rangle) = 2n - 1$, equivalently:

$$3 = h^{0}(C, \mathcal{O}(D_{s} + E)) = h^{0}(C, \mathcal{O}(L^{2}(-p - q)))$$

for infinitely many p+q. Since $h^0(C, \mathcal{O}(L^2)) = 4$ this implies that $|L^2|$ is composed with an involution, and this contradicts lemma 1. This proves that F_s is a rational normal curve.

Finally note that for every $p \in \text{Supp}(D_s) \cup \{v_L\}$ the space Λ_s belongs to a 1-dimensional subfamily of (1) consisting of $I\!\!P^n$'s containing p. Correspondingly there is a nonzero tangent vector $\theta_p \in T_{S,s}$ such that $d\chi_s(\theta_p) : U \to \frac{V}{U}$ vanishes at p. This implies that $p \in F_s$. q.e.d.

Note that as a consequence of theorem 2 we have that, for each sufficiently general $s \in S$, Supp $(D_s) \cup \{v_L\}$ consists of n+3 distinct points in linearly general position in Λ_s , because they lie on the rational normal curve F_s . The focal curve F_s is actually the only rational normal curve of Λ_s containing the n+3 distinct points $\operatorname{Supp}(D_s) \cup \{v_L\}$, and therefore it could be also defined as such.

For each $L \in W_{n+2}^1$ denote by $\mathcal{U} \subset \alpha_{n+2}^{-1}(L)$ the open subset such that $F_s \subset \Lambda_s$ is a rational normal curve. Define:

$$F_L = \bigcup_{s \in \mathcal{U}} F_s$$

From theorem 2 it follows that F_L is an irreducible surface such that

$$\kappa(C) \subset F_L \subset X_L$$

The surface F_L can be also described as follows. By lemma 1 the morphism $\varphi_{L^2}: C \to \mathbb{P}^3$ maps C birationally onto a curve $\varphi_{L^2}(C)$ of degree 2n+4=g+3 which is contained in a quadric cone V, whose generating lines cut on C the pencil |L|. Let $\sigma : U \to V$ be the blow up of V at the conductor ideal of $\varphi_{L^2}(C)$, and $C' \subset U$ the proper transform of $\varphi_{L^2}(C)$. Then the adjoint morphism $\varphi_{K_U+C'}: U \to \mathbb{P}$ maps U onto a surface containing $\kappa(C)$ which contains a 1-parameter family of rational curves of degree n (the images of the proper transforms of the lines of V) which cut on $\kappa(C)$ the linear series |L|. It follows that these curves are the focal curves and $\varphi_{K_U+C'}(U) = F_L$.

We define:

$$F_C = \bigcup_{L \in W_{n+2}^1} F_L$$

Note that $F_L \neq F_C$ for each $L \in W_{n+2}^1$ because otherwise $F_L = F_{L'}$ for all $L' \in W_{n+2}^1$, and the surface F_L would contain the 2-dimensional family of focal curves. But these curves would then be linearly equivalent on the desingularization U of F_L , and therefore they would define a g_{n+2}^2 on C, which is impossible (lemma 1).

Therefore $F_C \subset \mathbb{I}^p$ is a 3-dimensional irreducible variety containing $\kappa(C) \cup \Gamma$, and intrinsically defined by C. We will call it the variety of first order foci of W_{n+2}^1 .

When $g = 5 F_C$ is a hypersurface of \mathbb{I}^4 which we will consider again in §3, where we will compute its degree.

2. Second order foci

We have seen that the family (1) defines, for each $s \in S$, a closed subscheme $F_s \subset \Lambda_s$ of first order foci. All these subschemes fit together in a closed subscheme $\mathcal{F} \subset \underline{\Lambda}$ which is defined as

$$\mathcal{F} = D_1(\Phi)$$

where

$$\Phi: \pi^*(T_S) \to N_{\underline{\Lambda}/(S \times I\!\!P)}$$

is the characteristic homomorphism. We obtain a morphism $\pi_1: \mathcal{F} \to S$ and a diagram:

$$\begin{array}{l} \mathcal{F} \quad \subset \quad S \times I\!\!P \\ \downarrow \pi_1 \\ S \end{array}$$
 (2)

From theorem 2 it follows that for all sufficiently general $s \in S$ the fibre $F_s = \pi_1^{-1}(s)$ is a rational normal curve of degree n in Λ_s . For such an s we can introduce the second order foci of the family (1), defined as the first order foci of the family (2) at s. Namely, we consider the homomorphism

$$\xi_s: T_{S,s} \otimes \mathcal{O}_{F_s} \to N_{F_s}$$

where N_{F_s} is the normal bundle of F_s in \mathbb{P} , induced by the characteristic map

$$d\chi_{1s}: T_{S,s} \to H^0(F_s, N_{F_s})$$

(which is the differential of the functorial morphism $\chi_1 : S^{\circ} \to Hilb^{\mathbb{P}}$ defined on an open neighborhood S° of s in S); then we define the scheme of second order foci of the family (1) at s as

$$D_1(\xi_s) \subset F_s$$

i.e. as the closed subscheme of F_s defined by the condition $\operatorname{rk}(\xi_s) \leq 1$.

THEOREM 3 Let $s \in S$ be a sufficiently general point. Then we have:

$$D_1(\xi_s) = \Lambda_s \cap (\kappa(C) \cup \Gamma)$$

or, equivalently:

$$D_1(\xi_s) = \operatorname{Supp}(D_s) \cup \{v_L\}$$

where $L = \mathcal{O}(D_s)$. In particular the scheme of second order foci of the family (1) at s is a zero-dimensional closed subscheme of degree n + 3 of F_s .

Proof

Let $p \in \text{Supp}(D_s) \cup \{v_L\}$. Then, as remarked in the proof of theorem 2, there is an irreducible curve $B \subset S$ containing s such that $p \in \Lambda_{s'}$ for each $s' \in B$. It follows that $p \in F_{s'}$ for each $s' \in B$ and therefore there is a nonzero tangent vector $\theta_p \in T_{S,s}$ such that $d\chi_{1s}(\theta_p) \in H^0(F_s, N_{F_s})$ vanishes at p. Therefore $p \in D_1(\xi_s)$ and we have an inclusion

$$\operatorname{Supp}(D_s) \cup \{v_L\} \subset D_1(\xi_s)$$

Since $\operatorname{Supp}(D_s) \cup \{v_L\}$ consists of n+3 distinct points, by the generality of s, the theorem will follow if we prove that $\operatorname{deg}(D_1(\xi_s)) \leq n+3$.

Let's denote by ℓ the line bundle of degree 1 on F_s . We have a direct sum decomposition:

$$N_{F_s} \cong \left[\oplus^n \ell^n \right] \oplus \left[\oplus^{n-1} \ell^{n+2} \right]$$

corresponding to the decomposition:

$$N_{F_s} \cong (N_{\Lambda_s} \otimes \mathcal{O}_{F_s}) \oplus N_{F_s/\Lambda_s}$$

After a choice of a basis of $T_{S,s}$ and of these decompositions the homomorphism ξ_s is represented by a matrix of the form:

$$M = \begin{pmatrix} A \\ B \end{pmatrix}$$

where A is a $n \times 2$ matrix of sections of ℓ^n , and B is a $(n-1) \times 2$ matrix of sections of ℓ^{n+2} .

Note that A is the restriction to F_s of the matrix representing the homomorphism $\Phi_s: T_{S,s} \otimes \mathcal{O}_{\Lambda} \to N_{\Lambda}$; in particular A has rank one. More precisely choices can be made so that

$$A = \begin{pmatrix} t^{n} & st^{n-1} \\ st^{n-1} & s^{2}t^{n-2} \\ \dots & \dots \\ s^{n-1}t & s^{n} \end{pmatrix}$$

where $\{t, s\}$ is a basis of $H^0(F_s, \ell)$. From this expression we see that the *i*-th row of A is

$$t^{n-i}s^{i-1}\left(t\quad s\right)$$

It follows that

$$D_1(\xi_s) = D_1(N)$$

where

$$N = \begin{pmatrix} t & s \\ & B \end{pmatrix}$$

Since the entries of B are sections of ℓ^{n+2} , we deduce that $\deg(D_1(\xi_s)) \leq n+3$, and the conclusion follows. q.e.d.

The following corollary is now immediate:

COROLLARY 4 The family (1) uniquely determines $\kappa(C) \cup \Gamma$ as the closure of the union of its second order foci. In particular (1) uniquely determines $\kappa(C)$.

3. The genus 5 case

In this section we will assume that C is a general curve of genus g = 5 and we will compute the degree of the focal variety F_C . In this case F_C is a hypersurface of $I\!\!P \cong I\!\!P^4$ which can be also described in the following way.

Let Σ be the net of quadrics of \mathbb{I}^{P_4} containing $\kappa(C)$ and let $\Delta \subset \Sigma$ be the discriminant curve, i.e. the locus parametrizing singular quadrics. By the generality of C we have that Δ is a nonsingular quintic curve which parametrizes the rank 4 quadrics Q_L , $L \in W_4^1$, and the congruence (1) consists of all the planes contained in the quadrics Q_L .

For each $p \in \mathbb{P}^4 \setminus \kappa(C)$ denote by $\Sigma_p \subset \Sigma$ the pencil of quadrics of Σ containing p. Since the curve Γ is the locus of vertices of the quadrics Q_L , for each $v_L \in \Gamma$ the pencil Σ_{v_L} is the tangent line to Δ at the point $[Q_L]$.

On a plane $\Lambda \subset Q_L$ each quadric $Q \in \Sigma_{v_L}$ different from Q_L cuts the focal conic F, because $\Lambda \cap Q$ is a conic containing $\{v_L\} \cup (\kappa(C) \cap \Lambda)$; therefore $\Sigma_p = \Sigma_{v_L}$ for each $p \in F$. We therefore conclude that F_C is the closure of the set of points $p \in \mathbb{I}P^4 \setminus \kappa(C)$ such that $\Sigma_p = \Sigma_{v_L}$ for some $L \in W_4^1$. Equivalently, denoting by $\Delta^* \subset \Sigma^*$ the dual curve of Δ :

$$F_C = \overline{\{p \in I\!\!P^4 \backslash \kappa(C) : \Sigma_p \in \Delta^*\}}$$

Let's consider the rational map defined by Σ :

$$\varphi_{\Sigma}: I\!\!P^4 - - - \to \Sigma^*$$

Then

$$F_C = \overline{\varphi_{\Sigma}^{-1}(\Delta^*)}$$

Therefore, if λ is a general line of \mathbb{I}^4 , we have:

$$\deg(F_C) = \deg(\lambda \cap F_C) = \deg(\varphi_{\Sigma}(\lambda) \cap \Delta^*) = 20 \, \deg(\varphi_{\Sigma}(\lambda)) \tag{3}$$

because $\deg(\Delta^*) = 20$.

If $t \in \Sigma^*$ is a general line, $\overline{\varphi_{\Sigma}^{-1}(t)}$ is a general quadric of the net Σ . It follows that

$$\deg(\varphi_{\Sigma}(\lambda)) = \deg(t \cap \varphi_{\Sigma}(\lambda)) = \deg(\varphi_{\Sigma}^{-1}(t) \cap \lambda) = 2$$

Comparing with (3) we deduce that $\deg(F_C) = 40$. Therefore we have proved that following:

THEOREM 5 If C is a general curve of genus 5, the focal hypersurface $F_C \subset \mathbb{I}^{P^4}$ has degree 40.

REFERENCES

[CS] Ciliberto C., Sernesi E.: Singularities of the theta divisor and families of secant spaces to a canonical curve. *J. of Algebra* 171 (1995), 867-893.

[E] Eisenbud D.: Linear sections of determinantal varieties, Amer J. Math. 110 (1988), 541-575.

[G] Gieseker D.: Stable curves and special divisors, Invent. Math. 66 (1982), 251-275.

[K1] Kempf G.: On the geometry of a theorem of Riemann, Annals of Math. 98 (1973), 178-185.

[K2] Kempf G.: Curves of g_d^1 's, Compositio Math. 55 (1985), 157-162.

[P] Pirola P.: Chern character of degeneracy loci and curves of special divisors, Annali di Matematica pura e appl. (4) 142 (1985) 77-90.

Dipartimento di Matematica, Università di Roma-Tor Vergata, loc. La Romanina, 00133 ROMA (Italia)

E-mail address: ciliberto@axp.mat.utovrm.it

Dipartimento di Matematica, Università degli studi Roma Tre, L.go S.L. Murialdo 1, 00146 ROMA (Italia)

E-mail address: sernesi@mat.uniroma3.it